Faramarz Rostami Charati,^a Zinatossadat Hossaini,^b* and Mohammad R. Hosseini-Tabatabaei^c

^aFaculty of Science, Gonbad Higher Education Center, Gonbad, Iran
^bDepartment of Chemistry, Islamic Azad University, Qaemshahr Branch, 163 Mazandaran, Iran
^cDepartment of Chemistry, Islamic Azad University, Zabol Branch, Zabol, Iran
*E-mail: zshossaini@yahoo.com
Received July 19, 2010
DOI 10.1002/jhet.738
Published online 17 October 2011 in Wiley Online Library (wileyonlinelibrary.com).

A straightforward and efficient method for the synthesis of 1,2-dihydroisoquinolines *via* a one-pot, three-component reaction of isoquinoline, activated acetylenes, and NH-acids in water at 70° C without using any catalyst is reported. The method offers several advantages including high yields of products and an easy workup procedure.

J. Heterocyclic Chem., 49, 154 (2012).

INTRODUCTION

The organic reactions in aqueous media have attracted much attention in synthetic organic chemistry, not only because water is one of the most abundant, cheap, and environmentally friendly solvents but also because water exhibits unique reactivity and selectivity properties that are different from those of conventional organic solvents. Thus, development of novel reactivity as well as selectivity that cannot be attained in conventional organic solvents is one of the challenging goals of aqueous chemistry. Multicomponent reactions (MCRs) are fast and appropriate solutions for the synthesis of different classes of compounds and are important in synthetic organic chemistry [1-4]. 1,2-Dihydroisoquinolines, as basic scaffolds in many natural products and pharmaceuticals that show significant biological activities [5–11] have promoted considerable efforts toward their synthesis [12–17]. Thus, it is desired to increase novel methods to buildup the new 1,2-dihydroisoquinoline-based structures. At the present, it has been expected that chemical reactions in aqueous solutions frequently give better results than in organic solvents and often the insolubility of the last products facilitates their isolation [18,19].

As part of our continuing interest in the development of new synthetic methods in heterocyclic chemistry and our interest in isoquinoline-based multicomponent reactions [20–22], we describe an efficient synthesis of 1,2dihydroisoquinolines 4 *via* the reaction of isatin 1 with activated acetylenes 2 and isoquinoline 3 in water at 70° C (Scheme 1).

RESULT AND DISCUSSION

As indicated in Scheme 1, isatin 1, activated acetylenes 2, and isoquinoline 3 undergo a smooth 1:1:1 addition reaction in water at 70° C (the activated acetylenes and isatin are mixed first, and then isoquinoline is added) to produce 1,2-dihydroisoquinolines 4 in 82–96% yields (Scheme 1). We examined the diversity of reaction with different substitution as indicated in the Table 1.

Under similar conditions, the reaction of quinoline, pyridine, or phenanthridine with DMAD in the presence of various NH-acids led to dimethyl 2-[1(2H)-quinolinyl]-2-butenedioate (7), dimethyl 2-[1(2H)-pyridinyl]-2-butenedioate (8), or dimethyl 2-[1(2H)-phenanthridinyl]-2-butenedioate (9) in excellent yields (Table 2).

The reactions between isoquinoline, quinoline, pyridine, or phenanthridine with dimethyl acetylenedicarboxylate as a Michael acceptor [23–30] in the presence of heterocyclic NH acids were carried out in water and finished after ~ 10 h at room temperature. Products **4h–4j** and **9a–9e** are known compounds [30]. Structures of compounds **4a–4i**, **7a–7c**, **8a–8c**, and **9a–9e** were deduced from their IR, mass, ¹H-NMR, and ¹³C-NMR spectra.

Three Component Reactions of N-Nucleophiles and Activated Acetylenes with NH-Acids: A Facile Synthesis in Water

Scheme 1

The mass spectra of these compounds displayed molecular ion peaks at the appropriate m/z values.

The ¹H-NMR spectrum of **4a** exhibited four singlets for the methoxy (δ 3.88 and 3.94 ppm), olefinic (δ 5.39 ppm), and methin (δ 7.82 ppm) protons along with multiplets for the isoquinoline moiety. The proton-decoupled ¹³C-NMR spectrum of **4a** showed 23 distinct resonances in agreement with the proposed structure. Partial assignments of these resonances are given in Experimental Section.

Although the mechanistic details of the reaction are not known, a plausible rationalization may be advanced to explain the product formation. Presumably, the reaction involves the initial formation of a 1:1 zwitterionic intermediate **5** between isoquinoline and the activated acetylene, [31-36]. This intermediate is protonated by NH-acids and then attacked by the conjugate base of the NH-acids to produce **4** (Scheme 2).

In conclusion, we have reported an efficient and environmentally friendly approach for the synthesis of 1,2-disubstituted nitrogen containing heterocycles *via* condensation of activated acetylenes and isoquinoline, quinoline, pyridine, or phenanthridine in the presence of NH-acids using water as the solvent. To the best of our knowledge, this is the first report on the synthesis of compounds of type **4**, **7**, **8**, or **9** in water and this new procedure opens an important alternative to the use of volatile organic solvents.

EXPERIMENTAL

All chemicals were obtained from commercial sources. Melting points were measured on a Kofler hot stage apparatus and are uncorrected. ¹H-NMR and ¹³C-NMR spectra were obtained with a Bruker FT-500 spectrometer in chloroform-d1, and tetramethylsilane (TMS) was used as an internal standard. Mass spectra were recorded with a Finnigan Mat TSQ-70 spectrometer. Infrared (IR) spectra were acquired on a Nicollet Magna 550-FT spectrometer. Elemental analyses were carried out with a Perkin-Elmer model 240-C apparatus. The results of elemental analyses (C, H, and N) were within $\pm 0.4\%$ of the calculated values.

General procedure for the preparation of compounds 4, 7, 8, and 9. To a magnetically stirred solution of NH-acids (2 mmol) and dialkyl acetylenedicarboxylate (2 mmol) in H₂O (20 mL), isoquinoline, quinoline, pyridine, or phenanthridine (2 mmol) was added, and the reaction was heated for 10 h at 70°C. The completion of reaction was confirmed by TLC (EtOAc–hexane 6:1). The resulting precipitate was separated by filtration and recrystallized from EtOH to afford the pure title compounds.

Dimethyl 2-[1-(2,3-dioxo-2,3-dihydro-1H-indol-1-yl)-2(1H)isoquinolinyl]-2-butenedioate (4a). Pale yellow powder, mp 162–164°C, yield: 0.74 g (89%). IR(KBr) v_{max} (cm⁻¹): 1738, 1732, 1723, 1692, and 1245 cm⁻¹. ¹H-NMR: $\delta = 3.88$ (3 H, s, MeO), 3.94 (3 H, s, MeO), 5.39 (1 H, s, CH), 7.54 (1 H, d, ${}^{3}J = 7.6$ Hz, CH), 7.69 (2 H, t, ${}^{3}J = 7.2$ Hz, 2 CH), 7.73 (2 H, t, ${}^{3}J = 7.2$ Hz, 2 CH), 7.82 (1 H, s, CH), 7.93 (2 H, d, ${}^{3}J = 7.5$ Hz, 2 CH), 8.69 (2 H, d, ${}^{3}J = 7.5$ Hz, 2 CH), 9.31 (1 H, d, ${}^{3}J = 7.6$ Hz, CH) ppm. 13 C-NMR: $\delta = 51.6$ (MeO), 52.3 (MeO), 58.8 (CH), 94.6 (CH), 108.2 (CH), 122.4 (CH), 123.5 (2 CH), 124.7 (2 CH), 126.2 (2 CH), 128.4 (CH), 128.5 (C), 128.6 (C), 134.5 (CH), 1365.4 (C), 148.5 (C), 152.7 (C), 159.7 (C=O), 160.6 (C=O), 163.4 (C=O), 185.7 (C=O) ppm. MS: m/z (%) = 418 (M+, 15), 387 (45), 272 (58), 146 (94), 129 (100), 31(100). Anal. Calc. for C₂₃H₁₈N₂O₆ (418.40): C, 66.03; H, 4.34; N, 6.70; found: C, 65.94; H, 4.23; N, 6.62%.

Diethvl 2-[1-(2,3-dioxo-2,3-dihydro-1H-indol-1-yl)-2(1H)isoquinolinyl]-2-butenedioate (4b). Yellow powder, mp 140-142°C. yield: 0.84 g (94%). IR(KBr) v_{max} (cm⁻¹): 1738, 1735, 1724, 1682, and 1195 cm⁻¹. ¹H-NMR: $\delta = 1.41$ (3 H, t, ³J = 7.2 Hz, Me), 1.47 (3 H, t, ³J = 7.2 Hz, Me), 4.50 (2 H, q, ${}^{3}J = 7.2$ Hz, CH₂O), 4.57 (2 H, q, ${}^{3}J = 7.2$ Hz, CH₂O), 5.27 (1 H, s, CH), 7.49 (1 H, d, ${}^{3}J = 7.6$ Hz, CH), 7.56 (1 H, s, CH), 7.65 (2 H, t, ${}^{3}J = 7.3$ Hz, 2 CH), 7.68 (2 H, t, ${}^{3}J = 7.3$ Hz, 2 CH), 7.88 (2 H, d, ${}^{3}J = 7.5$ Hz, 2 CH), 8.65 (2 H, d, ${}^{3}J = 7.5$ Hz, 2 CH), 9.27 (1 H, d, ${}^{3}J = 7.6$ Hz, CH) ppm. 13 C-NMR: $\delta = 14.3$ (Me), 14.5 (Me), 58.5 (CH), 60.3 (CH₂O), 61.4 (CH₂O), 95.2 (CH), 108.5 (CH), 123.4 (2 CH), 124.7 (CH), 125.1 (CH), 126.7 (2 CH), 127.2 (CH), 128.4 (CH), 129.2 (C), 134.5 (CH), 135.3 (C), 137.6 (C), 147.8 (C), 152.6 (C), 160.4 (C=O), 161.2 (C=O), 164.5 (C=O), 185.5 (C=O) ppm. MS: m/z (%) = 446 (M+, 15), 368 (62), 290 (100), 253 (38), 146 (88), 129 (100), 31 (100). Anal. Calc. for $C_{25}H_{22}N_2O_6$ (446.46): C, 67.26; H, 4.97; N, 6.27; found: C, 67.14; H, 4.85; N, 6.13%.

Di(*tert-butyl*) 2-[*I*-(2,3-*di*oxo-2,3-*di*hydro-1*H*-*i*ndol-1-*y*])-2(1*H*)-*isoquinolinyl*]-2-*butenedioate* (4c). Yellow powder, mp 145–147°C, yield: 0.92 g (92%). IR(KBr) v_{max} (cm⁻¹): 1735, 1730, 1725, 1687, and 1278 cm⁻¹. ¹H-NMR: δ = 1.59 (9 H, s, 3 Me), 1.71 (9 H, s, 3 Me), 5.48 (1 H, s, CH), 7.48 (1 H, s, CH), 7.50 (1 H, d, ³J = 7.7 Hz, CH), 7.71 (2 H, d, ³J = 7.2 Hz, 2 CH), 7.73 (2 H, t, ³J = 7.2 Hz, 2 CH), 7.93 (2 H, t, ³J = 7.5 Hz, 2 CH), 8.55 (2 H, d, ³J = 7.5 Hz, 2 CH), 9.22

Entry	NH-acid	R	Product	Yield (%)
1		Ме	CO_2Me N CO_2Me H O H O A A A A A A A A	89
2'		Et	$ \begin{array}{c} & & \\ & & $	94
3		'Bu	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	92
4	N N H H	Me	$ \begin{array}{c} $	94
5		Et		84
6	$\begin{array}{c} O \\ H_3C \\ N \\ H \\ H \\ H \\ H \end{array} \xrightarrow{O} CH_3 \\ C$	Me	$ \begin{array}{c} & & & \\ & &$	89
7	$\begin{array}{c} O\\H_3C\\N\\H\\H\\H\\H\end{array} \\ H\\H\end{array} CH_3$	'Bu	$\begin{array}{c} & & \\$	94
8		Me	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	82
9	CH ₃	Ме	$ \begin{array}{c} $	95

 Table 1

 Synthesis of 1,2-dihydroisoquinoline derivatives in water.

(Continued)

Three Component Reactions of N-Nucleophiles and Activated Acetylenes with
NH-Acids: A Facile Synthesis in Water

(Continued)					
Entry	NH-acid	R	Product	Yield (%)	
10	CH ₃ N H	Me	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	96	
11		Ме		92	

Table 1

(1 H, d, ${}^{3}J$ = 7.7 Hz, CH) ppm. 13 C-NMR: δ = 28.3 (CMe₃), 28.4 (CMe₃), 59.4 (CH), 83.4 (CMe₃), 84.0 (CMe₃), 96.0 (CH), 109.2 (CH), 123.7 (2 CH), 125.4 (CH), 125.8 (CH), 127.2 (2 CH), 127.8 (CH), 128.8 (CH), 129.5 (C), 134.6 (CH), 135.5 (C), 136.8 (C), 147.2 (C), 151.7 (C), 160.5 (C=O), 161.4 (C=O), 164.3 (C=O), 186.0 (C=O) ppm. Anal. Calc. for C₂₉H₃₀N₂O₆ (502.56): C, 69.31; H, 6.02; N, 5.57; found: C, 69.24; H, 5.89; N, 5.46%.

Dimethyl 2-[1-(1H-midazol-1-yl)-2(1H)-isoquinolinyl]-2butenedioate (4d). Yellow powder, mp 124-126°C, yield: 0.64 g (94%). IR(KBr) v_{max} (cm⁻¹): 1732, 1725, 1557, 1410, and 1127 cm⁻¹. ¹H-NMR: δ = 3.75 (3 H, s, MeO), 3.82 (3 H, s, MeO), 5.98 (1 H, s, CH), 7.05 (1 H, d, ${}^{3}J = 5.7$ Hz, CH), 7.24 (1 H, d, ${}^{3}J = 7.5$ Hz, CH), 7.42 (1 H, d, ${}^{3}J = 5.7$ Hz, CH), 7.52 (1 H, t, ${}^{3}J = 7.5$ Hz, CH), 7.58 (1 H, t, ${}^{3}J = 7.5$ Hz, CH), 7.67 (1 H, s, CH), 7.70 (1 H, d, ${}^{3}J = 7.4$ Hz, CH), 7.85 (1 H, d, ${}^{3}J = 7.4$ Hz, CH), 8.02 (1 H, d, ${}^{3}J = 7.5$ Hz, CH), 8.25 (1 H, s, CH) ppm. ¹³C-NMR: $\delta = 51.5$ (MeO), 52.2 (MeO), 60.4 (CH), 98.2 (CH), 103.0 (CH), 118.2 (CH), 120.7 (CH), 127.5 (2 CH), 127.9 (CH), 129.3 (CH), 130.1 (CH), 137.5 (CH), 138.2 (C), 140.0 (C), 141.2 (C), 165.4 (C=O), 167.2 (C=O) ppm. Anal. Calc. for C₁₈H₁₇N₃O₄ (339.35): C, 63.71; H, 5.05; N, 12.38; found: C, 63.58; H, 4.92; N, 12.27%.

Diethyl 2-[1-(1H-indol-1-yl)-2(1H)-isoquinolinyl]-2-butenedioate (4e). Yellow powder, mp 115-117°C, yield: 0.75 g (84%). IR(KBr) v_{max} (cm⁻¹): 1738, 1732, 1545, 1412, and 1175 cm⁻¹. ¹H-NMR: $\delta = 1.25$ (3 H, t, ³J = 7.3 Hz, Me), 1.34 (3 H, t, ${}^{3}J = 7.3$ Hz, Me), 4.21 (2 H, q, ${}^{3}J = 7.3$ Hz, CH₂O), 4.32 (2 H, q, ${}^{3}J = 7.3$ Hz, CH₂O), 5.95 (1 H, s, CH), 6.87 (1 H, d, ${}^{3}J = 6.2$ Hz, CH), 7.23 (1 H, d, ${}^{3}J = 7.7$ Hz, CH), 7.38 (1 H, d, ${}^{3}J = 6.2$ Hz, CH), 7.56 (2 H, t, ${}^{3}J = 7.4$ Hz, 2 CH), 7.63 (2 H, t, ${}^{3}J = 7.4$ Hz, 2 CH), 7.63 (2 H, t, ${}^{3}J = 7.4$ Hz, 2 CH), 7.67 (1 H, s, CH), 7.74 (2 H, d, ${}^{3}J = 7.4$ Hz, 2 CH), 8.40 (2 H, d, ${}^{3}J = 7.4$ Hz, 2 CH), 9.25 (1 H, d, ${}^{3}J = 7.7$ Hz, CH) ppm. 13 C-NMR: δ = 13.8 (Me), 14.3 (Me), 60.0 (CH), 61.4 (CH₂O), 62.6 (CH₂O), 97.2 (CH), 103.4 (CH), 110.2 (CH), 115.6 (CH), 119.7 (2 CH), 121.3 (CH), 122.8 (CH), 125.5 (2 CH), 127.1 (CH), 128.6 (2 CH), 132.5 (C), 134.7 (C), 136.2 (C), 138.8 (C), 142.3 (C), 167.2 (C=O), 168.4 (C=O) ppm. MS: *m/z* (%) = 416 (M+, 15), 371 (54), 272 (52), 129 (100), 116 (86),45(100). Anal. Calc. for $C_{25}H_{24}N_2O_4$ (416.47): C, 72.10; H, 5.81; N, 6.73; found: C, 72.00; H, 5.74; N, 6.67%.

Dimethyl 2-[1-{methyl[(methylamino)carbonyl]amino}-2(1H)isoquinolinyl]-2-butenedioate (4f). Pale yellow powder, mp 120–122°C, yield: 0.64 g (89%). IR(KBr) v_{max} (cm⁻¹): 1730, 1727, 1717, 1712, and 1232 cm⁻¹. ¹H-NMR: $\delta = 3.17$ (3 H, s, NMe), 3.19 (3 H, s, NMe), 3.74 (3 H, s, MeO), 3.82 (3 H, s, MeO), 5.94 (1 H, s, CH), 6.52 (1 H, s, NH), 7.25 (1 H, d, ${}^{3}J = 7.5$ Hz, CH), 7.48 (1 H, t, ${}^{3}J = 7.5$ Hz, CH), 7.57 (1 H, t, ${}^{3}J = 7.6$ Hz, CH), 7.62 (1 H, s, CH), 7.75 (1 H, d, ${}^{3}J =$ 7.6 Hz, CH), 8.42 (1 H, d, ${}^{3}J = 7.5$ Hz, CH), 8.97 (1 H, d, ${}^{3}J = 7.5$ Hz, CH) ppm. 13 C-NMR: $\delta = 27.8$ (NMe), 33.4 (NMe), 52.4 (MeO), 53.6 (MeO), 65.4 (CH), 98.2 (CH), 102.3 (CH), 118.2 (CH), 124.3 (2 CH), 126.7 (CH), 128.5 (CH), 134.2 (C), 135.8 (C), 141.8 (C), 159.7 (C=O), 161.4 (C=O), 164.8 (C=O) ppm. MS: m/z (%) = 359 (M⁺, 5), 230 (45), 129 (100), 31(100). Anal. Calc. for $C_{18}H_{21}N_3O_5$ (359.38): C, 60.16; H, 5.89; N, 11.69; found: C, 60.04; H, 5.75; N, 11.58%.

Di(tert-butyl)2-[1-{methyl[(methylamino)carbonyl]amino}-2(1H)-isoquinolinyl]-2-butenedioate (4g). Yellow powder, mp 147–149°C, yield: 0.83 g (94%). IR(KBr) v_{max} (cm⁻¹): 1728, 1718, 1654, and 1258 cm⁻¹. ¹H-NMR: $\delta = 1.54$ (9 H, s, 3 Me), 1.68 (9 H, s, 3 Me), 2.65 (3 H, s, NMe), 2.97 (3 H, s, NMe), 5.58 (1 H, s, CH), 6.38 (1 H, s, NH), 7.48 (1 H, s, CH), 7.52 (1 H, d, ${}^{3}J = 7.5$ Hz, CH), 7.65 (1 H, d, ${}^{3}J =$ 7.2 Hz, CH), 7.74 (1 H, t, ${}^{3}J = 7.3$ Hz, CH), 7.84 (1 H, t, ${}^{3}J = 7.4$ Hz, CH), 8.58 (1 H, d, ${}^{3}J = 7.5$ Hz, CH), 9.18 (1 H, d, ${}^{3}J = 7.7$ Hz, CH) ppm. 13 C-NMR: $\delta = 27.6$ (CMe₃), 28.2 (CMe₃), 32.4 (NMe), 33.8 (NMe), 59.5 (CH), 82.8 (CMe₃), 83.6 (CMe₃), 96.4 (CH), 102.5 (CH), 118.6 (CH), 124.0 (2 CH), 127.2 (CH), 128.6 (CH), 134.4 (C), 136.0 (C), 142.2 (C), 160.4 (C=O), 162.3 (C=O), 165.7 (C=O) ppm. Anal. Calc. for C₂₄H₃₃N₃O₅ (443.54): C, 64.99; H, 7.50; N, 9.47; found: C, 64.84; H, 7.42; N, 9.35%.

Dimethyl 2-[1-(1H-pyrroll-1-yl)-2(1H)-isoquinolinyl]-2-butenedioate (4k). Yellow powder, mp 134–136°C, yield: 0.62 g (92%). IR(KBr) v_{max} (cm⁻¹): 1730, 1722, 1545, 1425, and 1167 cm⁻¹. ¹H-NMR: δ = 3.80 (3 H, s, OMe), 3.85 (3 H, s, OMe), 5.95 (1 H, s, CH), 6.84 (1 H, d, ³J = 6.7 Hz, CH), 6.97 (2 H, t, ³J = 5.8 Hz, 2 CH), 7.24 (1 H, d, ³J = 7.2 Hz, CH), 7.32 (2 H, t, ³J = 6.2 Hz, 2 CH), 7.38 (1 H, t, ³J = 6.7 Hz, CH), 7.54 (1 H, d, ³J = 7.5 Hz, CH), 7.68 (1 H, s, CH), 7.78 (1 H, d, ³J = 7.5 Hz, CH), 8.02 (1 H, d, ³J = 7.5 Hz, CH) ppm. ¹³C-NMR: δ = 51.5 (OMe), 52.7 (OMe),

Entry	NH-acid	R	Product	Yield (%)
1		Ме	MeO ₂ C _M H	88
2	H_3C	Me	$MeO_2C_{H_1} \rightarrow CH_3$	86
3		Ме	MeO ₂ C _{ut} H 7c	89
4	N H	Ме	MeO ₂ C _{rt} H Ba	86
5		Ме	MeO ₂ C _{ut} H Bb	90
6	$\begin{array}{c} 0 \\ H_3C \\ N \\ H \\ H \\ H \\ H \\ H \end{array} \xrightarrow{CH_3} CH_3$	Ме	MeO ₂ C _{rth} H Bc	89
7	CH ₃	Ме	$ \begin{array}{c} $	92
8	K K K K K K K K K K K K K K K K K K K	Ме	MeO_2C H CO_2Me CO_2Me CO_2H CO_2H	94
9		Ме	$ \frac{MeO_2C}{H} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} N$	97

Table 2
Synthesis of 1,2-dihydroquinoline, 1,2-dihydropyridine, or 1,2-dihydrophenanthridine derivatives in water.

(Continued)

January 2012

Table 2 (Continued)					
Entry	NH-acid	R	Product	Yield (%)	
10	H	Me	MeO ₂ C H ^{**} CO ₂ Me 9d	95	
11	Br N H	Ме	$MeO_{2C} N N N P Br$ $H^{T} CO_{2}Me$ $9e$ Br	96	

58.7 (CH), 98.4 (CH), 104.2 (CH), 120.4 (CH), 122.8 (2 CH), 123.3 (2 CH), 127.5 (2 CH), 128.4 (CH), 131.5 (CH), 135.4 (C), 137.3 (C), 14.08 (C), 163.8 (C=O), 165.7 (C=O) ppm. Anal. Calc. for $C_{19}H_{18}N_2O_4$ (338.36): C, 67.45; H, 5.36; N, 8.28; found: C, 67.32; H, 5.28; N, 8.19%.

Dimethyl 2-[2-(1H-indol-1-yl)-1(2H)-quinolinyl]-2-butenedioate (7a). Yellow powder, mp 135-137°C, yield: 0.68 g (88%). IR(KBr) v_{max} (cm⁻¹): 1732, 1728, 1694, 1548, and 1243 cm^{-1} . ¹H-NMR: δ = 3.85 (3 H, s, OMe), 3.90 (3 H, s, OMe), 5.47 (1 H, s, CH), 6.38 (1 H, d, ${}^{3}J = 5.8$ Hz, CH), 6.85 (1 H, d, ${}^{3}J = 6.5$ Hz, CH), 7.35 (1 H, d, ${}^{3}J = 6.5$ Hz, CH), 7.55 (1 H, d, ${}^{3}J = 7.4$ Hz, CH), 7.56 (2H, t, ${}^{3}J = 7.2$ Hz, 2 CH), 7.60 (2 H, $t_{1}^{3}J = 7.2$ Hz, 2 CH), 7.79 (2 H, d, ${}^{3}J = 7.7$ Hz, 2 CH), 8.15 (2 H, d, ${}^{3}J = 7.2$ Hz, 2 CH), 8.21 (1 H, d, ${}^{3}J = 7.7$ Hz, CH) ppm. ${}^{13}C$ -NMR: $\delta = 51.5$ (OMe), 52.5 (OMe), 59.2 (CH), 97.5 (CH), 102.5 (CH), 113.4 (CH), 117.8 (2 CH), 120.4 (CH), 121.8 (2 CH), 122.5 (2 CH), 125.4 (CH), 127.6 (CH), 129.8 (C), 131.6 (CH), 133.2 (C), 136.3 (C), 138.7 (C), 141.8 (C), 165.4 (C=O), 166.8 (C=O) ppm. MS: m/z (%) = 388 (M⁺, 15), 357 (45), 129 (100), 116 (94), 31 (100). Anal. Calc. for $C_{23}H_{20}N_2O_4$ (388.42): C, 71.12; H, 5.19; N, 7.21; found: C, 70.98; H, 5.05; N, 7.12%.

Dimethyl 2-[2-{methyl[(methylamino)carbonyl]amino}-1(2H)-quinolinyl]-2-butenedioate (7b). Yellow powder, mp 128–130°C, yield: 0.64 g (86%). IR(KBr) v_{max} (cm⁻¹): 1735, 1727, 1695, 1547, and 1194 cm⁻¹. ¹H-NMR: $\delta = 3.22$ (3 H, s, NMe), 3.25 (3 H, s, NMe), 3.83 (3 H, s, OMe), 3.87 (3 H, s, OMe), 5.86 (1 H, s, CH), 6.38 (1H, d, ³J = 8.2, NH), 7.35 (1 H, d, ³J = 7.3 Hz, CH), 7.40 (1 H, t, ³J = 7.5 Hz, CH), 7.52 (1 H, t,

 ${}^{3}J = 7.5$ Hz, CH), 7.57 (1 H, m, CH), 7.62 (1 H, d, ${}^{3}J = 7.5$ Hz, CH), 7.75 (1 H, d, ${}^{3}J = 7.5$ Hz, CH), 7.82 (1 H, d, ${}^{3}J = 7.5$ Hz, CH), 7.75 (1 H, d, ${}^{3}J = 7.5$ Hz, CH), 7.82 (1 H, d, ${}^{3}J = 7.5$ Hz, CH) ppm. 13 C-NMR: $\delta = 27.5$ (NMe), 33.6 (NMe), 51.4 (OMe), 52.8 (OMe), 68.2 (CH), 98.5 (CH), 114.8 (CH), 117.5 (CH), 121.4 (CH), 126.7 (C), 128.5 (CH), 131.4 (CH), 133.8 (CH), 135.6 (C), 142.7 (C), 159.6 (C=O), 163.8 (C=O), 165.2 (C=O) ppm. MS: m/z (%) = 359 (M⁺, 10), 328 (45), 230 (52), 129 (100), 31 (100). Anal. Calc. for C₁₈H₂₁N₃O₅ (359.38): C, 60.16; H, 5.89; N, 11.69; found: C, 60.23; H, 5.94; N, 11.76%.

Dimethyl 2-[2-(1*H*-pyrrol-1-yl)-1(2*H*)-quinolinyl]-2-butenedioate (7c). Yellow powder, mp 131–133°C, yield: 0.60 g (89%). IR(KBr) v_{max} (cm⁻¹): 1728, 1720, 1587, 1457, and 1168 cm⁻¹. ¹H-NMR: δ = 3.82 (3 H, s, MeO), 3.87 (3 H, s, MeO), 5.87 (1 H, s, CH), 6.38 (2 H, t, ³J = 5.7 Hz, 2 CH), 6.85 (1 H, d, ³J = 6.2 Hz, CH), 6.96 (2 H, t, ³J = 5.9 Hz, 2 CH), 7.23 (1 H, d, ³J = 7.4 Hz, CH), 7.32 (1 H, t, ³J = 7.2 Hz, CH), 7.40 (1 H, t, ³J = 7.2 Hz, CH), 7.64 (1 H, d, ³J = 6.8 Hz, CH), 7.75 (1 H, d, ³J = 7.2 Hz, CH), 8.25 (1 H, d, ³J = 7.5 Hz, CH) ppm. ¹³C-NMR: δ = 52.3 (MeO), 52.7 (MeO), 60.3 (CH), 100.4 (CH), 117.4 (CH), 119.2 (CH), 121.5 (2 CH), 122.6 (2 CH), 124.3 (2 CH), 128.4 (CH), 131.4 (CH), 132.0 (C), 138.7 (C), 143.2 (C), 167.2 (C=O), 169.0 (C=O) ppm. Anal. Calc. for C₁₉H₁₈N₂O₄ (338.36): C, 67.45; H, 5.36; N, 8.28; found: C, 67.35; H, 5.30; N, 8.22%.

Dimethyl 2-[2-(1H-indol-1-yl)-1(2H)-pyridinyl]-2-butenedioate (8a). Yellow powder, mp 119–121°C, yield: 0.58 g (86%). IR(KBr) v_{max} (cm⁻¹): 1740, 1735, 1674, 1453, and 1153 cm⁻¹.

Journal of Heterocyclic Chemistry DOI 10.1002/jhet

¹H-NMR: δ = 3.73 (3 H, s, OMe), 3.80 (3 H, s, OMe), 5.56 (1 H, s, CH), 6.42 (1 H, d, ${}^{3}J$ = 6.3 Hz, CH), 6.52 (1 H, d, ${}^{3}J$ = 6.8 Hz, CH), 6.68 (1 H, t, ${}^{3}J$ = 7.4 Hz, CH), 6.75 (H, t, ${}^{3}J$ = 7.5 Hz, CH), 7.14 (1 H, t, ${}^{3}J$ = 7.4 Hz, CH), 7.35 (1 H, d, ${}^{3}J$ = 6.8 Hz, CH), 7.48 (1 H, d, ${}^{3}J$ = 7.4 Hz, CH), 7.55 (1 H, d, ${}^{3}J$ = 7.4 Hz, CH), 7.63 (1 H, t, ${}^{3}J$ = 7.3 Hz, 2 CH), 7.95 (1 H, d, ${}^{3}J$ = 7.7 Hz, CH), 8.22 (2 H, d, ${}^{3}J$ = 6.9 Hz, 2 CH) ppm. 13 C-NMR: δ = 51.2 (OMe), 52.4 (OMe), 59.6 (CH), 98.2 (CH), 114.5 (CH), 119.2 (CH), 120.4 (2 CH), 121.5 (CH), 122.2 (CH), 122.8 (2 CH), 125.6 (CH), 132.6 (C), 134.7 (CH), 136.5 (C), 138.5 (C), 167.2 (C=O), 169.2 (C=O) ppm. Anal. Calc. for C₁₉H₁₈N₂O₄ (338.36): C, 67.45; H, 5.36; N, 8.28; found: C, 67.38; H, 5.27; N, 8.16%.

Dimethyl 2-[2-(*imidazol-1-yl*)-1(2H)-pyridinyl]-2-butenedioate (8b). Yellow powder, mp 115–117°C, yield: 0.52 g (90%). IR(KBr) v_{max} (cm⁻¹): 1728, 1724, 1525, and 1147 cm⁻¹. ¹H-NMR: δ = 3.75 (3 H, s, MeO), 3.82 (3 H, s, MeO), 5.92 (1 H, s, CH), 6.75 (1 H, t, ³J = 7.3 Hz, CH), 7.18 (1 H, t, ³J = 7.4 Hz, CH), 7.27 (1 H, d, ³J = 6.5 Hz, CH), 7.38 (1 H, d, ³J = 6.5 Hz, CH), 7.75 (1 H, d, ³J = 6.4 Hz, CH), 7.86 (1 H, s, CH), 8.35 (1 H, d, ³J = 7.3 Hz, CH), 9.12 (1 H, d, ³J = 7.3 Hz, CH) ppm. ¹³C-NMR: δ = 51.6 (OMe), 52.4 (OMe), 62.2 (CH), 129.8 (CH), 134.5 (C), 138.3 (CH), 162.4 (C=O), 164.8 (C=O) ppm. Anal. Calc. for C₁₄H₁₅N₃O₅ (289.29): C, 58.13; H, 5.23; N, 14.53; found: C, 58.25; H, 5.32; N, 15.61%.

Dimethyl 2-[2-{methyl[(methylamino)carbonyl]amino]-1(2H)pyridinyl]-2-butenedioate (8c). Yellow powder, mp 117–119°C, yield: 0.55 g (89%). IR(KBr) v_{max} (cm⁻¹): 1738, 1736, 1730, 1625, 1584, and 1185 cm⁻¹. ¹H-NMR: δ = 3.27 (3 H, s, NMe), 3.32 (3 H, s, NMe), 3.78 (3 H, s, OMe), 3.85 (3 H, s, OMe), 5.86 (1 H, s, CH), 6.34 (1H, d, ³J = 8.5, NH), 6.78 (1 H, t, ³J = 7.3 Hz, CH), 7.03 (1 H, m, CH), 7.37 (1 H, t, ³J = 7.5 Hz, CH), 7.42 (1 H, m, CH), 7.97 (1 H, d, ³J = 7.5 Hz, CH) ppm. ¹³C-NMR: δ = 28.2 (NMe), 32.5 (NMe), 51.5 (OMe), 52.6 (OMe), 67.4 (CH), 100.2 (CH), 109.4 (CH), 113.5 (CH), 120.8 (CH), 133.8 (C), 135.7 (CH), 159.8 (C=O), 160.2 (C=O), 165.2 (C=O) ppm. Anal. Calc. for C₁₄H₁₉N₃O₅ (309.32): C, 54.36; H, 6.19; N, 13.58; found: C, 54.27; H, 6.04; N, 13.47%.

REFERENCES AND NOTES

[1] Ramon, D. J.; Yus, M. Angew Chem Int Ed Engl 2005, 44, 1602.

[2] Zhu, J. Eur J Org Chem 2003, 1133.

[3] Bienayme, H.; Hulme, C.; Oddon, G.; Schmitt, P. Chem Eur J 2000, 6, 3321.

[4] Domling, A.; Ugi, I. Angew Chem Int Ed Engl 2000, 39, 3168.

[5] Kaneda, T.; Takeuchi, Y.; Matsui, H.; Shimizu, K.; Urakawa, N.; Nakajyo, S. J Pharm Sci 2005, 98, 275.

[6] Marchand, C.; Antony, S.; Kohn, K. W.; Cushman, M.; Ioanoviciu, A.; Staker, B. L.; Burgin, A. B.; Stewart, L.; Pommier, Y. Mol Cancer Ther 2006, 5, 287. [7] Bentley, K. W. The Isoquinoline Alkaloids; Pergamon Press: London, 1965.

[8] Bentley, K. W. Nat Prod Rep 2001, 18, 148.

[9] Michael, J. P. Nat Prod Rep 2002, 19, 742.

[10] Scott, J. D.; Williams, R. M. Chem Rev 2002, 102, 1669.

[11] Hansch, C. P.; Sammes, G.; Taylor, J. B. Comprehensive Medicinal Chemistry; Pergamon Press: Oxford, 1990.

[12] Obika, S.; Kono, H.; Yasui, Y.; Yanada, R.; Takemoto, Y.J Org Chem 2007, 72, 4462.

[13] Asao, N.; Iso, K.; Yudha, S. S. Org Lett 2006, 8, 4149.

[14] Asao, N.; Chan, C. S.; Takahashi, K.; Yamamoto, Y. Tetrahedron 2005, 61, 11322.

[15] Shaabani, A.; Soleimani, E.; Khavasi, H. R. Tetrahedron Lett 2007, 48, 4743.

[16] Huang, Q.; Larock, R. C. J Org Chem 2003, 68, 980.

[17] Ding, Q.; Wang, Z.; Wu, J. Tetrahedron Lett 2009, 50, 198.

[18] Grieco, P. A. Organic Synthesis in Water; Blackie Academic & Professional: Glasgow, 1998.

[19] Anastas, P.; Williamson, T. C. Green Chemistry Frontiers in Benign Chemical Synthesis and Processes; Oxford University Press: New York, 1998.

[20] Yavari, I.; Hossaini, Z.; Sabbaghan, M. Tetrahedron Lett 2006, 47, 6037.

[21] Yavari, I.; Ghazanfarpour-Darjani, M.; Sabbaghan, M.; Hossaini, Z. Tetrahedron Lett 2007, 48, 3749.

[22] Yavari, I.; Hossaini, Z.; Sabbaghan, M.; Ghazanfarpour-Darjani, M. Chem Mon 2007, 138, 677.

[23] Hassani, Z.; Islami, M. R.; Sheibani, H.; Kalantari, M.; Saidi, K. ARKIVOC 2006, 89.

[24] Islami, M. R.; Mollazehi, F.; Badiei, A.; Sheibani, H. ARKIVOC 2006, xv, 25.

[25] Kalantari, M.; Islami, M. R.; Hassani, Z.; Saidi, K. ARKI-VOC 2006, x, 55.

[26] Maghsoodlou, M. T.; HabibiKhorassani, S. M.; Rofouei, M. K.; Adhamdoust, S. R.; Nassiri, M. ARKIVOC 2006, xii, 145.

[27] Maghsoodlou, M. T.; Hazeri, N.; Habibi Khorassani, S. M.; Rofouei, M. K.; Rezaie, M. ARKIVOC 2006, xiii, 117.

[28] Yavari, I.; Mirzaei, A.; Hossaini, Z.; Souri, S. Mol Divers 2010, 14, 343.

[29] Khalilzadeh, M. A.; Hossaini, Z.; Kharian, S. Mol Divers 2010, 14, 605.

[30] Nassiri, M.; Maghsoodlou, M. T.; Heydari, R.; Habibi Khorassani, S. M. Mol Divers 2008, 12, 111.

[31] Winterfeldt, E. Angew Chem Int Ed Engl 1967, 6, 423.

[32] (a) Johnson, A. W.; Tebby, J. C. J Chem Soc 1961, 2126;

(b) Tebby, J. C.; Wilson, I. F.; Griffiths, D. V. J Chem Soc Perkin Trans 1 1979, 2133; (c) Butterfield, P. J.; Tebby, J. C.; Griffiths, D. V.

J Chem Soc Perkin Trans 1 1979, 1189. [33] (a) Diels, O.; Alder, K. Liebigs Ann Chem 1932, 498, 16;

(b) Acheson, R. M. Adv Heterocycl Chem 1963, 1, 125; (c) Acheson, R. M.; Plunkett, A. O. J Chem Soc 1964, 2676.

[34] (a) Winterfeldt, E. Chem Ber 1964, 97, 1952; (b) Winterfeldt, E.; Dillinger, H. J Chem Ber 1966, 99, 1558.

[35] Winterfeldt, E., Schumann, D.; Dillinger, H. J Chem Ber 1969, 102, 1656.

[36] Maghsoodlou, M.; Nassiri, M.; Heydari, R.; Hazeri, N.; Habibi-Khorassani, S. M.; Jalili Milani, F. ARKIVOC 2010, 61.